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Abstract. We generalize Hegerfeldt's concept of T-positivity in Euclidean random fields to 
non-commutative probability theory, that is, to Euclidean Fermi fields and to current 
algebra with possible Schwinger terms. Our axioms imply the Wightman axioms. A 
non-Abelian form of Markovicity is introduced, and is shown to imply T-positivity if a 
reflection property holds. 

The investigation suggests a generalization of Nelson-Symanzik positivity, which might 
be valid in cases when the extension of the Schwinger functions to coinciding arguments is 
not expected to maintain both commutativity and positivity (or anti-commutativity and 
positivity). 

1. Introduction and definitions 

According to axiomatic quantum field theory (Wightman 1956, Streater and Wightman 
1964), the Wightman functions W(xl, . . , , x,) of a quantum field theory possess 
analytic continuations to points in the forward tube 

I = { x  E c4" : Im[x, - xi+J E V ,  i = 1,2,  . . . n - I}. 

Here, x1 . , . are complex four-vectors, and v' is the forward cone in R4: v' = 
{x :xo>O, (x0)*>x2}, x = (xo, xl, x2, x3). In particular, they may be continued to the 
Schwinger points {x ~ C " : R e x ? = I m x ~  =0,  Im(xP-x?+l)>O}. Schwinger (1959) 
pointed out that at such points, the functions are invariant under the real Euclidean 
group E'; the functions W, evaluated at the Schwinger points, are called the Schwinger 
functions of the theory, regarded as distributions over real space and imaginary time. 
Symanzik (1969) had the idea that in theories based on Hamiltonians, these functions 
should be the moments of a generalized random field over R4 with certain Markov 
properties. He assumed that S(xl, , . . x,) has an extension, as a tempered distribution, 
to R4", including equal-time points that are not Schwinger points. 

Symanzik's ideas were given new impetus by Nelson (1973) who further developed 
the notion of Markov fields. This theory is related to the classical theory analysed for 
Gaussian fields by Wong (1969). Subsequently, Osterwalder and Schrader (1973, 
1975) gave the necessary and sufficient conditions on the Schwinger functions, for them 
to be obtained from the Wightman functions of some relativistic quantum field. While 
in one sense this settles the question, it remains of interest to ask under what conditions 
Euclidean fields exist, or, equivalently, when can we extend the Schwinger functions to 
equal-time points, so as to get the moments of a positive finite measure on the space of 
histories. This has been discussed by Borchers and Yngvason (1976) and Challifour and 
Slinker (1975). The general solution in the former gives rise to a complex measure, 
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rather than a probability measure. As a result, many of the ideas of probability theory, 
such as Markovicity, Feynman-Kac formula etc, lose their force. It would be interest- 
ing to find a formalism some way between the generality of the Wightman axioms (or 
the equivalent Osterwalder-Schrader axioms) and the much more restrictive Nelson 
axioms. 

Hegerfeldt (1974) has proposed a new property, called T-positivity, which is more 
general than the Markov condition of Nelson, but which is sufficient, when combined 
with Nelson’s other axioms for Euclidean fields, to reconstruct the Wightman theory, 
while maintaining a probabilistic interpretation. The T-positivity condition is similar 
to, but somewhat stronger than the Osterwalder-Schrader positivity condition, as is 
seen when it is imposed on the generating functional of the field (Hegerfeldt 1974). 

The question arises whether a Euclidean probability theory, involving classical 
random fields, is general enough to describe all interesting Wightman fields, such as 
fields in the Borchers class of the free field (Wightman 1956, Streater and Wightman 
1964, Borchers 1960, Epstein 1963). It is plausible that such fields obey some form of 
current commutation relations at coinciding points in Euclidean,space. In this paper we 
shall allow such possibilities by introducing non-commutative random fields. 

Definition 1. Let G be a Lie group with identity e and dG its Lie algebra. Let 
Exp : dG + G be the exponential map from dG to G. Let g (  ) be a map from R” to G, 
where v denotes the dimension of space-time. The support of g,  written supp g,  is the 
closure of the set { x :  g(x) # e } .  Let 9(R”, G) denote the set of cm-maps g from R” to G 
with compact support. Let x be a multiplication law on 9 ( R y ,  G) making it into a group 
‘9. We say that 24 is a local current group if 

(1) for every f l  and f2 E 9 ( R ” ) ,  and A E dG, we have 

Exp(fi( * ) A  1 X Exp(f2( . ) A )  = Exp[(fi( +fi( 1 ) ) A  I ; 
( 2 )  for every g l (  0 ), g2( ) E ’9 such that supp g l  n supp g2 = 4, we have 

g1 x g2 = g2 xg1. 

That is, group elements associated with disjoint regions commute. 

This definition is more general than the definition of current group given by Streater 
(1968, 1971) and Streater and Mathon (1971), where the group law was postulated to 
be pointwise multiplication: ( g l  x g z ) ( x )  = g l ( x ) g 2 ( x ) .  This pointwise definition is tan- 
tamount to the absence of Schwinger terms in the corresponding Lie algebra. Hermann 
(1970) has shown how to define a group whose Lie algebra contains Schwinger terms of 
any desired form. Hermann’s groups are local current groups according to definition 1. 

Another example of a local current group is the Schwartz space 9(R”)  itself, being 
9(R”, R) with pointwise addition taking the role of X. 

So far, we have not put any topology on the current group. It does not seem possible 
to do this in an interesting way if we insist that our group becomes locally compact. 
Instead, we shall impose a mild continuity condition on the representations to be 
considered. 

2. Markovian and T-positive representations 

If 2 is a Hilbert space, we shall denote by Aut 2 the group of unitary operators on X 
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Let (9(R” ,  G), X)  be a local current group and suppose f E 9(R” )  and A E dG are given. 
Then the one-parameter subgroup through fA is the map R-+9(R”, G) given by 
A + Exp(Af( * ) A ) .  

Definition 2. A cyclic representation of the current group % = (9(R”, G), X) on a 
Hilbert space Z, with cyclic vector a, is a group homomorphism U from 92 to Aut 2, 
such that U(g) is continuous along every one-parameter subgroup, and the vectors 
{ U(g( ))a: g(  ) E %} are total in Z. 

As usual, a cyclic representation is uniquely determined by the expectation func- 
tional 

F(g(  1) =(a, U(g( * ))a>. 
Any generalized random field in the sense of Gel’fand and Vilenkin (1964) provides a 
representation of 9 ( R ” ) ,  and any representation of the canonical commutation rela- 
tions in Segal’s (1963) form provides a representation of 9(Ry, N), where N is the 
Heisenberg group and the multiplication is pointwise. 

An analysis of all representations known as factorizable was undertaken by Streater 
(1969) and more completely, by Araki (1970). Parthasarathy and Schmidt (1972a) 
study factorizable projective representations (see Guichardet 1972 and Parthasarathy 
and Schmidt 1972b for a general account). Goldin and Sharp (1970) and Grodnik and 
Sharp (1970) give examples of representations of groups without pointwise multiplica- 
tion, and a systematic way to allow for Schwinger terms is to be found in Parthasarathy 
and Schmidt (1976). For further work, see Vershik et a1 (1973, 1974, 1975) and 
Albeverio and Hgegh-Krohn (1976). None of these constructions is useful for relativis- 
tic quantum field theory, even if interpreted in Euclidean space-time rather than as 
equal-time commutations relations in R3. This is because the factorizability condition 
leads to fields with independent values at different points, which is too strong a 
requirement. We now replace this condition by a more appropriate condition, T- 
positivity, following Hegerfeldt (1974) closely. 

Definition 3. We say a cyclic representation (U, a, %‘) of a local current group 
(a@”, G), x) is Euclidean covariant if there exists a continuous representation (a ,  R) + 
T(a, R) of the full Euclidean group on Z, and a representationR + S ( R )  of O(v)  on dG, 
regarded as a real vector space, such that T(a, R)a = t2 and 

T(a, R)U(Exp(f( )A))T-’(a,  R )  = U(Expf,,R( ) s ( R ) A )  

for all (a ,  R )  E E”, f E 9 ( R ” ) ,  A E dG. Here, fa,R(x) =f(R-’(x - a ) ) ,  x E R”. 

shall denote by T the unitary operator T(0,O) where O E O(v)  is time-reversal 
If (U, a, %‘) is a Euclidean covariant representation of a local current group, we 

e(xl, . . . , x u )  = (xl, x2, . . . xu-l, -xu ) .  

T, will denote T((0, 0, . . . , t ) ,  1). 

is that generated by { U(g( * ))a: supp g E R:}. 
Let R: = { x  E R”: * x u  > 0) and let E,  be the projection onto the subspace Z*, which 

Definition 4 .  With this notation, the representation is said to be T-positive if 

E+TE+z=O. 



264 R F Streater 

As in Hegerfeldt (1974), one can then decompose %+ into X0 on which E+TE+ is 
strictly positive, and the null space RN of E+TE+. Let Eo be the orthogonal projection 
onto Z0 and To the restriction of EoTEo to Eo; then 5’ exists as a densely defined 
operator. Analogues of lemmas 2.1,2.2 and proposition 2.1 of Hegerfeldt (1974) can 
then be formulated and proved as done by Hegerfeldt leading to the following 
proposition and theorem. 

Proposition 2.1. Let (U, i2, X) be a T-positive cyclic Euclidean covariant representa- 
tion of a local current group, and let X0, To, Eo and T, be as above. Let P t =  
T ~ / * E o T ~ G ” ~  on TAI2R0. Then {Pt, f 0) can be extended to a continuous self-adjoint 
contraction semi-group on Z0. 

Hegerfeldt (1974) shows that T-positivity is a generalization of a weak form of 
Markovicity, and the reflection property of Nelson. The same considerations apply 
here. If (U, i2, 2‘) is a cyclic representation of a current group, covariant but not 
necessarily T-positive, we may say that it is Markovian relative to the plane x u  = 0 if 
E+E- is a projection, Eo. Let Z0 =Eo%. This represents states localized at x ’ = 0. Let 
us say such a representation obeys the reflection property if T = 1 on X0. 

Theorem. Let (B = ( 9 ( R v ,  G) ,  x )  be a local current group, and (U, R, 2‘) a cyclic 
representation of 3, covariant under time-translation and time-reflection. Then the 
representation is Markovian and satisfies the reflection property if and only if E+TE+ is 
a projection. 

3. The axiom (A‘) and the reconstruction theorem 

Let (U, i2, X) be a cyclic representation of a current group % = (9(R’, G), X), which is 
covariant under translations. Let K = (2P;)”*, where Pi, j = 1,2,  . . . v, is the generator 
of space-translations in W. Let R k  be the associated scale, - a x k C + a .  Let A(f )  
denote the self-adjoint generator of A + U(Exp Af( ) A ) ,  A E R, A E dG, f~ 9(R”). 

Assumption (A’) .  (U, A(f)u)  is defined and is separately continuous on R”x 9(R”) x 
R W. 

Let Lf<(IW””) c 9’(IW”’) denote the set of functions such that for any derivative 
f n ) , T ) ( x 1 ,  . . . x,,) = 0 unless x y < x g < .  . . < x ~ .  

Theorem. Let 9 = (9(R”, G), X) be a local current group, and let (U, R, 2) be a cyclic 
representation, covariant under the full Euclidean group, with unique translation- 
invariant vector R (up to a multiple). Assume T-positivity and assumption A‘. Then 
for AI,  . . . A,, E dG, (R, A l ( f l )  . . . A,,(f,,)R) exist as tempered distributions on 
SP,(rW”n), and are the Schwinger functions of a unique Wightman theory. 

The proof of this theorem follows, lemma by lemma, the proof of theorem (4.1) of 
Hegerfeldt (1974). At one point, the author remarks that the commutativity of the 
fields is crucial; but detailed investigation reveals that it is only necessary that the 
Euclidean fields commute at different times. 
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Just as in Hegerfeldt (1974) one identifies %,I as the physical Hilbert space of the 
Wightman theory, and if P, = e-H‘, H is the Hamiltonian. 

So far, we have considered unitary cyclic representations of groups. The Wightman 
axioms, and the Osterwalder-Schrader axioms, are formulated in terms of the fields 
A ( f )  rather than the unitary operators eiA‘). The formulation in terms of groups is 
tighter, since it ensures the self-adjointness of A ( f )  while avoiding any assumptions 
about its domain. Nevertheless, it is useful to reformulate our axioms in terms of the 
fields. Since we make no specific assumptions about the singularity at coincident points, 
one can drop the assumptions that the field has values in a Lie algebra, replacing it by a 
general vector space, and one may also allow fermions. 

Axioms 

(1) We are given a Hilbert space X, carrying a representation T(a ,R)  of the full 
Euclidean group E, with a unique invariant vector s2. 
(2) Let K = (ZP;)”*, where T(a, 1) = elaP and let R k ,  --COS k < m, be the correspond- 
ing scale. 

We are given fields A,@) such that (U, Aj( f ) v )  is a continuous map from 4“ X 
.sC(R”) x 4“ to @, and 

T(a, R)Aj(f)T-’(a,  R)=C S,k(R)Ak(fa,R) 
k 

for (a ,  R )  E E, f E 9’(R”). 

(4) Let T denote time-reversal, and let X+ be the span of {A l , ( f , ) .  . . Aln(f,,)R; n = 
0, 1,. . . f i~Y(Rz) ,  j l , .  . . E (0, 1,. . .)}. Let E+ be the projection onto X+. Then 
E+TE+ 2 0 holds. 

(3) If supp f n SUPP g = 0 A,(f)Ak (g )  = *Ak ( g ) A j ( f ) *  

Such a system will be called a T-positive quantum field. 
The reconstruction theorem: 

if (A,  2, S Z )  is a T-positive quantum field, then 

(Q A,,(f,) - - * Aj,(fn>n>, defined on Y<(R’), 
are the Schwinger functions of a unique Wightman field. The proof is as in Hegerfeldt 
(1974). 
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